Maximizing Influence Propagation in Networks with Community Structure
نویسندگان
چکیده
We consider the algorithmic problem of selecting a set of target nodes that cause the biggest activation cascade in a network. In case when the activation process obeys the diminishing return property, a simple hill-climbing selection mechanism has been shown to achieve a provably good performance. Here we study models of influence propagation that exhibit critical behavior and where the property of diminishing returns does not hold. We demonstrate that in such systems the structural properties of networks can play a significant role. We focus on networks with two loosely coupled communities and show that the double-critical behavior of activation spreading in such systems has significant implications for the targeting strategies. In particular, we show that simple strategies that work well for homogenous networks can be overly suboptimal and suggest simple modification for improving the performance by taking into account the community structure.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملMaximizing the Speed of Influence in Social Networks
Influence maximization is the study of seed-node selection in a social network in order to achieve the maximized number of influenced nodes. Previous studies focused on three areas, i.e., designing propagation models, improving seed-node selection algorithms and exploiting the structure of social networks. However, most of these studies ignored the time constraint in influence propagation. Here...
متن کاملCSI: Community-Level Social Influence Analysis
Modeling how information propagates in social networks driven by peer influence, is a fundamental research question towards understanding the structure and dynamics of these complex networks, as well as developing viral marketing applications. Existing literature studies influence at the level of individuals, mostly ignoring the existence of a community structure in which multiple nodes may exh...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملApplication of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2009